Vídeo:
Friday, December 20, 2013
Saturday, November 30, 2013
Friday, November 08, 2013
Wednesday, October 02, 2013
Saturday, August 03, 2013
Os azulejos articulados 14b01 e 14c01 (duais um do outro)
Etiquetas:
azulejos,
azulejos portugueses,
portuguese tiles
Sunday, June 23, 2013
Sunday, June 09, 2013
Com um simples azulejo (actividades no Departamento de Matemática da FCUL)
Actividades no DM - do 4º ano ao 7º ano de escolaridade
-
Actividade - "Com um simples azulejo" - para alunos do 3º ano ao 7ºano de escolaridade a realizar no Departamento de Matemática da Faculdade de Ciências da Universidade de Lisboa.
As visitas, com marcação prévia, decorrerão entre as 14h e as 16h, de 2ª a 6ª feira, durante o próximo mês de Junho, envolvendo, em cada sessão até 30 alunos.
As actividades são gratuitas. Os alunos deverão trazer lápis, borracha, tesoura e marcadores ou lápis de cor.
Informações e marcação prévia dm_divulgação@fc.ul.pt
Friday, May 31, 2013
Intervenção na cerimónia de entrega dos Prémios 'SOS Azulejo' 2012
Vídeo:
-
Fotos:
Etiquetas:
azulejos,
azulejos portugueses,
Jorge Rezende,
SOS Azulejo
Wednesday, May 29, 2013
PRÉMIO "ABORDAGEM INOVADORA" (PRÉMIOS SOS AZULEJO 2012)
Etiquetas:
azulejos,
azulejos portugueses,
Jorge Rezende,
SOS Azulejo
Monday, May 27, 2013
Aquilino Ribeiro (13 de Setembro de 1885 — 27 de Maio de 1963)
Saturday, May 25, 2013
ALCIPE
Leonor de Almeida Portugal (Wikipedia) (Marquesa de Alorna, "Alcipe")
Fotografia de Eduardo Nery. Veja mais fotografias aqui:
Novo Jardim e Laranjal no Palácio Fronteira, Lisboa- Azulejo/Tile
Novo Jardim e Laranjal no Palácio Fronteira, Lisboa- Azulejo/Tile
-
Sozinha no bosque
com meus pensamentos.
calei as saudades,
fiz trégua aos tormentos.
Olhei para a Lua,
que as sombras rasgava,
nas trémulas águas
seus raios soltava.
Naquela torrente
que vai despedida,
encontro, assustada,
a imagem da vida.
Do peito, em que as dores
já iam cessar,
revoa a tristeza,
e torno a pensar.
Marquesa de Alorna (Alcipe)
com meus pensamentos.
calei as saudades,
fiz trégua aos tormentos.
Olhei para a Lua,
que as sombras rasgava,
nas trémulas águas
seus raios soltava.
Naquela torrente
que vai despedida,
encontro, assustada,
a imagem da vida.
Do peito, em que as dores
já iam cessar,
revoa a tristeza,
e torno a pensar.
Marquesa de Alorna (Alcipe)
-
Vídeo:
-
(Carlos Paredes)
-
Palácio Fronteira:
Etiquetas:
Alorna,
Eduardo Nery,
Palácio Fronteira,
Paredes
Thursday, May 09, 2013
PRÉMIOS SOS AZULEJO 2012
«Temos o grato prazer de informar que o júri dos ‘Prémios SOS Azulejo 2012’ presidido pelo Professor Víctor Serrão selecionou no passado dia 17 de Abril os Premiados deste ano.
A cerimónia de entrega dos prémios realizar-se-á no Palácio Marquês da Fronteira, no próximo dia 28 de Maio 2013, pelas 17h.
O evento é aberto ao público em geral, mediante inscrição obrigatória confirmada e condicionada à lotação da sala. As inscrições, aceites por ordem de chegada, deverão ser enviadas para: museu.pj@pj.pt»
A cerimónia de entrega dos prémios realizar-se-á no Palácio Marquês da Fronteira, no próximo dia 28 de Maio 2013, pelas 17h.
O evento é aberto ao público em geral, mediante inscrição obrigatória confirmada e condicionada à lotação da sala. As inscrições, aceites por ordem de chegada, deverão ser enviadas para: museu.pj@pj.pt»
Etiquetas:
azulejos,
azulejos portugueses,
portuguese tiles,
SOS Azulejo,
tiles
Sunday, April 28, 2013
Thursday, April 25, 2013
25 de Abril: «Esta é a madrugada que eu esperava»
Selo da CNSPP. Autor: Eduardo Nery
«1969 (...) [Eduardo Nery] Integra-se e participa activamente na Associação [sic] Nacional de Socorro aos Presos Políticos, para a qual cria o seu logotipo.»
-
(imagem copiada de aqui)
-
25 de Abril
«1969 (...) [Eduardo Nery] Integra-se e participa activamente na Associação [sic] Nacional de Socorro aos Presos Políticos, para a qual cria o seu logotipo.»
-
(imagem copiada de aqui)
-
25 de Abril
Esta é a madrugada que eu esperava
O dia inicial inteiro e limpo
Onde emergimos da noite e do silêncio
E livres habitamos a substância do tempo
Sunday, April 21, 2013
Estudos para painéis de azulejos com um centro de rotação de ordem 2 no meio
Consideramos o caso em que há um centro de rotação no meio do azulejo e utilizaremos, para começar, um azulejo sem outras simetrias próprias como na Figura d em Simetrias próprias dos azulejos.
Uma das possibilidades mais evidentes e não triviais, mas elementares, é a de reunir quatro azulejos em torno de um dos vértices e, em seguida, obter um painel fazendo translações.
Para maior clareza e para considerar todas as situações de uma forma exaustiva, numeremos os vértices no sentido direto (o contrário ao dos ponteiros do relógio): 1, 2, 1 e 2. O vértice 1 é o do canto superior direito na posição em que está o azulejo da Figura 1d em Simetrias próprias dos azulejos. Em torno desse vértice reuniremos mais três azulejos. Para cada um dos três restantes há duas maneiras de os colocar o que dá, ao todo, 8 (2×2×2) possibilidades. De facto, notando os três cantos restantes p, q e r, como mostram as Figuras 6-8 em O azulejo articulado de Eduardo Nery, formamos um quadrado com quatro azulejos (1pqr). Ordenando todas as possibilidades por ordem crescente, obtemos que no conjunto, de quatro azulejos de ordem n, n é dado pela fórmula n=4(p-1)+2(q-1)+ r. Para p, q, r =1, 2, vem n=1, 2, ..., 8.
Depois, trata-se de fazer as translações. Há três possibilidades para as translações: paralelamente aos lados (translações de duas unidades na vertical e translações de duas unidades na horizontal, como mostra a Figura 6 em O azulejo...); translações de duas unidades na horizontal e translações oblíquas (de duas unidades na vertical e de uma unidade na horizontal, como mostra a Figura 7 em O azulejo...); translações de duas unidades na vertical e translações oblíquas (de duas unidades na horizontal e de uma unidade na vertical, como mostra a Figura 8 em O azulejo...). Tudo somado, há 24 (8×3) possibilidades, numeradas de 1 a 8, de 1’ a 8’ e de 1’’ a 8’’, respectivamente.
Nos 24 painéis possíveis, há repetições e equivalências no sentido em que um painel pode ser obtido de outro por translações e rotações. O leitor verifique que há 7 possibilidades diferentes, contadas assim:
1; 2=3, 5, 8; 4=7, 7', 4''; 6=6', 6''; 1'=4', 1'', 7''; 2'=5', 8', 3''; 3'=2'', 5'', 8''.
Suponhamos agora que o azulejo tem eixo de reflexão numa diagonal (Figura g em Simetrias...). Reservemos o número 1 para os vértices que contêm essa diagonal. Colocando o azulejo ao espelho, vê-se precisamente a mesma imagem só que os vértices 2 trocam. Colocando os quatro azulejos ao espelho, os azulejos contados no sentido direto, aparecem na imagem no sentido retrógrado. O leitor verifique que há: com reflexão, 5; sem reflexão: 2 (2' e 3' são reflexos um do outro); se, de cada par de painéis reflexos um do outro, escolhermos apenas um, há 6 possibilidades.
Uma das possibilidades mais evidentes e não triviais, mas elementares, é a de reunir quatro azulejos em torno de um dos vértices e, em seguida, obter um painel fazendo translações.
Para maior clareza e para considerar todas as situações de uma forma exaustiva, numeremos os vértices no sentido direto (o contrário ao dos ponteiros do relógio): 1, 2, 1 e 2. O vértice 1 é o do canto superior direito na posição em que está o azulejo da Figura 1d em Simetrias próprias dos azulejos. Em torno desse vértice reuniremos mais três azulejos. Para cada um dos três restantes há duas maneiras de os colocar o que dá, ao todo, 8 (2×2×2) possibilidades. De facto, notando os três cantos restantes p, q e r, como mostram as Figuras 6-8 em O azulejo articulado de Eduardo Nery, formamos um quadrado com quatro azulejos (1pqr). Ordenando todas as possibilidades por ordem crescente, obtemos que no conjunto, de quatro azulejos de ordem n, n é dado pela fórmula n=4(p-1)+2(q-1)+ r. Para p, q, r =1, 2, vem n=1, 2, ..., 8.
Depois, trata-se de fazer as translações. Há três possibilidades para as translações: paralelamente aos lados (translações de duas unidades na vertical e translações de duas unidades na horizontal, como mostra a Figura 6 em O azulejo...); translações de duas unidades na horizontal e translações oblíquas (de duas unidades na vertical e de uma unidade na horizontal, como mostra a Figura 7 em O azulejo...); translações de duas unidades na vertical e translações oblíquas (de duas unidades na horizontal e de uma unidade na vertical, como mostra a Figura 8 em O azulejo...). Tudo somado, há 24 (8×3) possibilidades, numeradas de 1 a 8, de 1’ a 8’ e de 1’’ a 8’’, respectivamente.
Nos 24 painéis possíveis, há repetições e equivalências no sentido em que um painel pode ser obtido de outro por translações e rotações. O leitor verifique que há 7 possibilidades diferentes, contadas assim:
1; 2=3, 5, 8; 4=7, 7', 4''; 6=6', 6''; 1'=4', 1'', 7''; 2'=5', 8', 3''; 3'=2'', 5'', 8''.
Suponhamos agora que o azulejo tem eixo de reflexão numa diagonal (Figura g em Simetrias...). Reservemos o número 1 para os vértices que contêm essa diagonal. Colocando o azulejo ao espelho, vê-se precisamente a mesma imagem só que os vértices 2 trocam. Colocando os quatro azulejos ao espelho, os azulejos contados no sentido direto, aparecem na imagem no sentido retrógrado. O leitor verifique que há: com reflexão, 5; sem reflexão: 2 (2' e 3' são reflexos um do outro); se, de cada par de painéis reflexos um do outro, escolhermos apenas um, há 6 possibilidades.
Se, em vez de ser na diagonal o eixo de reflexão for numa mediana (Figura f em Simetrias...), as possibilidades repartem-se assim: com reflexão, 7; sem reflexão: 0.
-
Ver:
Thursday, April 18, 2013
Azulejos articulados com um eixo de reflexão numa mediana
-
Apresenta-se aqui uma tabela com uma listagem de painéis compostos por cópias de um único azulejo com um eixo de reflexão numa mediana. Na primeira coluna está o número do painel (para ver o que significa este número, consultar O azulejo articulado de Eduardo Nery; aqui, a mediana reflecte o vértice 1 no vértice 2 e o vértice 3 no vértice 4). Na segunda coluna diz-se se o painel é reflexo ou, no caso de não o ser, qual é o número do painel que é o seu reflexo. Nas colunas seguintes estão as áreas e os grupos de simetria referentes a azulejos articulados. As discrepâncias entre eles e os azulejos comuns estão apenas em três painéis: o 11 (nos "comuns" a área é 2 e o grupo pg); o 28 (nos "comuns" a área é 1 e o grupo pm); e o 58 (nos "comuns" a área é 2 e o grupo c2mm). Estes azulejos "comuns", por vezes belíssimos, podem ser vistos nas ligações que, a seguir, se indicam.
-
Ver:
-
Etiquetas:
Almada Negreiros,
Athos Bulcão,
azulejos,
Eduardo Nery,
Raul Lino,
tiles,
wallpaper groups
Wednesday, April 17, 2013
O azulejo de 1966 de Eduardo Nery comparado com um azulejo só com um eixo de reflexão numa diagonal
-
Apresenta-se aqui uma tabela com uma listagem de painéis. Na primeira coluna está o número do painel (para ver o que significa este número, consultar O azulejo articulado de Eduardo Nery). Na segunda coluna diz-se se o painel é reflexo ou, no caso de não o ser, qual é o número do painel que é o seu reflexo. Na terceira coluna está a área de uma região fundamental. Na quarta coluna está o grupo de simetria. A vermelho, estão os dados do azulejo comum, só com um eixo de reflexão numa diagonal, nos cinco casos em que há divergências com o azulejo de Eduardo Nery. Estes azulejos "comuns", por vezes belíssimos, podem ser vistos nas ligações que, a seguir, se indicam.
-
Ver:
Etiquetas:
Almada Negreiros,
Athos Bulcão,
azulejos,
Eduardo Nery,
tiles,
wallpaper groups
Tuesday, April 16, 2013
Simetrias próprias dos azulejos
A figura representa todos os oito grupos de simetrias próprias que podem ocorrer nos azulejos quadrados. Pequenos círculos com um número são centros de rotação (de ordem 2 ou 4). Segmentos vermelhos são eixos de reflexão. As simetrias próprias de um azulejo não traduzem completamente as propriedades matemáticas do azulejo quando inserido num painel, como se pode constatar no artigo O azulejo articulado de Eduardo Nery.
Para ver diferentes azulejos com estas simetrias, consulte:
Simetrias próprias de azulejos de Almada Negreiros: b, c, d, e, h
-
Ver:
Etiquetas:
Alexandre Mancini,
Almada Negreiros,
Athos Bulcão,
azulejos,
Eduardo Nery,
Raul Lino,
simetria,
symmetry,
tiles
Monday, April 15, 2013
Sunday, April 14, 2013
Simetrias próprias de azulejos de Almada Negreiros
Fotografia retirada de aqui.
Fotografia retirada de aqui.
-
Ver ainda:
-
Aqui estão azulejos de diversos tipos: azulejos com um eixo de reflexão numa diagonal, azulejos com um eixo de reflexão numa mediana, azulejos com um centro de rotação de ordem 2 no meio e azulejos com centro de rotação de ordem 4 no meio. Refiro-me só aos azulejos com traços escuros; os outros, sem traço escuros, têm um centro de rotação de ordem 4 no meio e quatro eixos de reflexão (dois nas diagonais e dois nas medianas).
Aqui estão azulejos de diversos tipos: azulejos com um eixo de reflexão numa diagonal, azulejos com um eixo de reflexão numa mediana, azulejos com um centro de rotação de ordem 2 no meio e azulejos com centro de rotação de ordem 4 no meio. Refiro-me só aos azulejos com traços escuros; os outros, sem traço escuros, têm um centro de rotação de ordem 4 no meio e quatro eixos de reflexão (dois nas diagonais e dois nas medianas).
Etiquetas:
Almada Negreiros,
azulejos,
Pardal Monteiro,
simetria,
symmetry,
tiles
Saturday, April 13, 2013
Simetrias próprias de azulejos de Alexandre Mancini
Azulejos com um centro de rotação de ordem 2 no meio e dois eixos de reflexão nas medianas.
-
Etiquetas:
Alexandre Mancini,
azulejos,
simetria,
symmetry,
tiles
Friday, April 12, 2013
Simetrias próprias de azulejos de Athos Bulcão: Rio Atlântica Hotel - Rio de Janeiro
Painel de azulejos, Terraço do Rio Atlântica Hotel, 1989. Foto: Tuca Reinés
Aqui estão azulejos de diversos tipos: azulejos com um eixo de reflexão numa diagonal, azulejos com um centro de rotação de ordem 2 no meio e azulejos com centro de rotação de ordem 2 no meio e dois eixos de reflexão nas diagonais.
Ver neste blogue:
Ver ainda:
Etiquetas:
Athos Bulcão,
azulejos,
simetria,
symmetry,
tiles
Thursday, April 11, 2013
Simetrias próprias de azulejos de Raul Lino
Desenhos de Jorge Rezende (de um azulejo de Raul Lino)
Azulejos com um eixo de reflexão numa mediana
-
Ver neste blogue:
Wednesday, April 10, 2013
Simetrias próprias de azulejos do Palácio Nacional de Sintra
Este e o seu reflexo são azulejos com um centro de rotação de ordem 2 no meio
Desenhos de Jorge Rezende
-
Tuesday, April 09, 2013
Simetrias próprias de azulejos de Athos Bulcão: Igrejinha Nossa Senhora de Fátima
Azulejos com um eixo de reflexão numa mediana, o da pomba, e azulejos com um centro de rotação de ordem 4 no meio e quatro eixos de reflexão (dois nas diagonais e dois nas medianas), o da estrela.
Painel de azulejos, Entrequadras 307/308 Sul, Igrejinha Nossa Senhora de Fátima, 1957. Foto: Ricardo Padue
-
-
Ver neste blogue:
Ver ainda:
Etiquetas:
Athos Bulcão,
azulejos,
simetria,
symmetry,
tiles
Monday, April 08, 2013
Simetrias próprias de azulejos de Athos Bulcão: Residência Sérgio Parada
Athos Bulcão com um azulejo sem qualquer simetria própria
-
Ver neste blogue:
Ver ainda:
Etiquetas:
Athos Bulcão,
azulejos,
simetria,
symmetry,
tiles
Sunday, April 07, 2013
Simetrias próprias de azulejos de Athos Bulcão: Centro Cultural Missionário da CNBB
Azulejos com um eixo de reflexão numa diagonal
Painel de azulejos, Centro Cultural Missionário da CNBB, 1995.. Foto: Edgar César Filho
-
Ver neste blogue:
Athos Bulcão
Ver ainda:
http://www.fundathos.org.br/
-
Ver neste blogue:
Athos Bulcão
Ver ainda:
http://www.fundathos.org.br/
Etiquetas:
Athos Bulcão,
azulejos,
simetria,
symmetry,
tiles
Saturday, April 06, 2013
Simetrias próprias de azulejos de Athos Bulcão: Brasília Palace Hotel
Azulejos com um eixo de reflexão numa mediana (imagem retirada de aqui)
Etiquetas:
Athos Bulcão,
azulejos,
simetria,
symmetry,
tiles
Wednesday, March 27, 2013
Articulated tiles / Azulejos articulados
Consider infinitely many copies of a single square tile and cover the plane with them, without gaps and without overlaps (a tiling of the plane), with the vertices making a square point lattice. Choose a point in a tile. If there is a tiling of the plane where this point is a rotation center of order n, one says that it is a rotation center of order n of the tile itself.
Tiles can only have two or four rotation centers of order 4 located in the middle of the edges.
Articulated tiles have two, and only two, rotation centers of order 4 in the middle of two edges; this means that the other two are not rotation centers of order 4. Moreover, they have a natural ''division'' in the four squares that one can obtain by drawing the two lines that connect the middle of oposite edges. These squares form a kind of matrix with two rows and two columns (2×2).
Tiles can only have two or four rotation centers of order 4 located in the middle of the edges.
Articulated tiles have two, and only two, rotation centers of order 4 in the middle of two edges; this means that the other two are not rotation centers of order 4. Moreover, they have a natural ''division'' in the four squares that one can obtain by drawing the two lines that connect the middle of oposite edges. These squares form a kind of matrix with two rows and two columns (2×2).
Articulated tiles must also have some other properties that classify them in three disjoint families.
-
Properties of the three families of articulated tiles:
-
a) The first family of articulated tiles. The two rotation centers of order 4 are located in the middle of two edges with a common vertice. Each one of the four small squares of the tile remain invariant under a rotation by an angle of 180º.
b) The second family of articulated tiles. The two rotation centers of order 4 are located in the middle of two opposite edges. If one translates (exchanges) the two small squares of each diagonal of the tile, the tile does not change.
-
c) The third family of articulated tiles. The two rotation centers of order 4 are located in the middle of two opposite edges. Each one of the four small squares of the tile remain invariant under a rotation by an angle of 180º.
See also:
Subscribe to:
Posts (Atom)